Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.09.503302

ABSTRACT

CD4+ T follicular helper (TFH) cells are required for high-quality antibody generation and maintenance. However, the longevity and functional role of these cells are poorly defined in COVID-19 convalescents and vaccine recipients. Here, we longitudinally investigated the dynamics and functional roles of spike-specific circulating TFH cells and their subsets in convalescents at the 2nd, 5th, 8th, 12th and 24th months after COVID-19 symptom onset and in vaccinees after two and three doses of inactivated vaccine. SARS-CoV-2 infection elicited robust spike-specific TFH cell and antibody responses, of which spike-specific CXCR3+ TFH cells but not spike-specific CXCR3- TFH cells and neutralizing antibodies were persistent for at least two years in more than 80% of convalescents who experienced symptomatic COVID-19, which was well coordinated between spike-specific TFH cell and antibody responses at the 5th month after infection. Inactivated vaccine immunization also induced spike-specific TFH cell and antibody responses; however, these responses rapidly declined after six months with a two-dose standard administration, and a third dose significantly promoted antibody maturation and potency. Functionally, spike-specific CXCR3+ TFH cells exhibited better responsiveness than spike-specific CXCR3- TFH cells upon spike protein stimulation in vitro and showed superior capacity in supporting spike-specific antibody secreting cell (ASC) differentiation and antibody production than spike-specific CXCR3- TFH cells cocultured with autologous memory B cells. In conclusion, spike-specific CXCR3+ TFH cells played a dominant functional role in antibody elicitation and maintenance in SARS-CoV-2 infection and vaccination, suggesting that induction of CXCR3-biased spike-specific TFH cell differentiation will benefit SARS-CoV-2 vaccine development aiming to induce long-term protective immune memory.


Subject(s)
COVID-19
2.
Nanotechnology Reviews ; 11(1):2110-2122, 2022.
Article in English | ProQuest Central | ID: covidwho-1875163

ABSTRACT

Food safety has become a topic of global concern in the recent decades. The significant food safety incidents occur from time to time around the world, seriously threatening the public health and causing extensive economic losses. In particular, the occurrence of COVID-19 highlights the importance of the food safety for the public health. Therefore, there is an urgent need to establish a fast, simple, sensitive, and efficient method for the detection of food safety. In recent years, the upconversion (UC) nanotechnology has been widely used in the field of food detection. The UC fluorescence analysis technology possesses the advantages of ultra-sensitivity detection, non-invasiveness, light stability, etc., and has broad application prospects in the field of food safety. After cladding and surface modification, it can be combined with other substances through a variety of mechanisms, such as electrostatic interaction, thereby expanding its application in the food safety detection. Thus, overall, there is a vital need to evaluate and utilize the potential of UC nanoparticles in the field of rapid detection of food safety.

4.
Engineering (Beijing) ; 6(10): 1162-1169, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-716696

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread throughout the world, leading to large-scale population infection. Angiotensin-converting enzyme 2 (ACE2) is the receptor of both severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, it is still controversial whether vertical transmission exists. In order to investigate the potential risk of SARS-CoV-2 vertical transmission, we explored ACE2 and TMPRSS2 (encoding transmembrane protease serine 2) expression patterns in peri-implantation embryos and the maternal-fetal interface using previously published single-cell transcriptome data. The results showed that day 6 (D6) trophectoderm (TE) cells in peri-implantation embryos, as well as syncytiotrophoblast (STB) at 8 weeks of gestation (STB_8W) and extravillous trophoblast (EVT) cells at 24 weeks of gestation (EVT_24W) in the maternal-fetal interface, strongly co-expressed ACE2 and TMPRSS2, indicating a SARS-CoV-2 infection susceptibility. The ACE2 positive-expressing cells in the three cell types mentioned above were found to share common characteristics, which were involved in autophagy and immune-related processes. ACE2 showed no gender bias in post-implantation embryos but showed a significant gender difference in D6_TE, D6 primitive endoderm (PE) cells, and ACE2 positive-expressing STBs. These findings suggest that there may be different SARS-CoV-2 infection susceptibilities of D6 embryos of different genders and during the gestation of different genders. Our results reveal potential SARS-CoV-2 infection risks during embryo transfer, peri-implantation embryo development, and gestation.

5.
Sci China Life Sci ; 63(7): 1006-1015, 2020 07.
Article in English | MEDLINE | ID: covidwho-177413

ABSTRACT

Being infected by SARS-CoV-2 may cause damage to multiple organs in patients, such as the lung, liver and heart. Angiotensin-converting enzyme 2 (ACE2), reported as a SARS-CoV-2 receptor, is also expressed in human male testes. This suggests a potential risk in human male reproductive system. However, the characteristics of ACE2-positive cells and the expression of other SARS-CoV-2 process-related genes are still worthy of further investigation. Here, we performed singlecell RNA seq (scRNA-seq) analysis on 853 male embryo primordial germ cells (PGCs) and 2,854 normal testis cells to assess the effects of the SARS-CoV-2 virus on the male reproductive system from embryonic stage to adulthood. We also collected and constructed the scRNA-seq library on 228 Sertoli cells from three non-obstructive azoospermia (NOA) patients to assess the effects at disease state. We found that ACE2 expressing cells existed in almost all testis cell types and Sertoli cells had highest expression level and positive cells ratio. Moreover, ACE2 was also expressed in human male PGCs. In adulthood, the level of ACE2 expression decreased with the increase of age. We also found that ACE2 positive cells had high expressions of stress response and immune activation-related genes. Interestingly, some potential SARS-CoV-2 process-related genes such as TMPRSS2, BSG, CTSL and CTSB had different expression patterns in the same cell type. Furthermore, ACE2 expression level in NOA donors' Sertoli cells was significantly decreased. Our work would help to assess the risk of SARS-CoV-2 infection in the male reproductive system.


Subject(s)
Azoospermia/genetics , Betacoronavirus/pathogenicity , Coronavirus Infections , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral , Testis/metabolism , Testis/virology , Adult , Angiotensin-Converting Enzyme 2 , Azoospermia/complications , Azoospermia/metabolism , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Embryonic Germ Cells/metabolism , Embryonic Germ Cells/virology , Gene Expression , Gene Expression Profiling , Gene Regulatory Networks , Humans , Male , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/complications , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2 , Sertoli Cells/metabolism , Sertoli Cells/virology , Single-Cell Analysis , Spermatogenesis/genetics , Spermatogenesis/physiology , Testis/cytology
SELECTION OF CITATIONS
SEARCH DETAIL